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ABSTRACT

The consistent drive to make everything from toasters to au-
tonomous combat aircraft ‘smart’ forces an examination of
the cost-effectiveness of intelligence, as well as its general ap-
plicability. In this paper we draw on examples from natural
intelligent systems and suggest that it is possible to make
intelligent systems too smart. We suggest that there is an
‘appropriate inteligence’ for all tasks, and that adding more
intelligence may have unexpected negative consequences.
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1 INTRODUCTION

There is a trend in recent artificial intelligence research
to put more and more intelligence into just about ev-
erything. This runs the gamut from intelligent ‘internet-
aware’ toasters, to land-mine detection robots, to com-
puter viruses that adapt to the security installed on indi-
vidual machines. This push towards smarter and smarter
devices brings up the question “When is too much intel-
ligence a bad thing?”

In this paper we present a few arguments and sug-
gest the use of ‘appropriate intelligence’ for the tasks and
responsibilities of an intelligent system. In addition, we
propose that too much intelligence may be worse than
insufficient intelligence in some task domains.

The domain that we use as an example is that of a
lowly service robot (See Figure 1), that thankless drudge
that rolls up and down countless hallways in hotels and
office buildings cleaning the carpets; or comes out when
the house is empty to clean up the debris from last night’s
cocktail party - the vacuum cleaning robot. In a 1995
study, the commercial cleaning market was estimated to
be worth approximately $40 Billion[1], and the obsta-
cle that was identified as preventing greater use of auto-
mated cleaning robots was insufficient processing power.
In short, they just are not smart enough. In this paper,
we discuss some of the potential consequences of “just
make them smarter.”

Donald Knuth was quoted as saying that “Science is
what we understand well enough to explain to a com-
puter. Art is everything else we do.” We don’t really

Fig.1. A prototypical service robot. This is a Robo-Scout
impressed into cleanup duty, using a Eureka bagless vacuum
cleaner.

know how to make smart machines, and there are sug-
gestions that we don’t really know what ‘smart’ is[2]. If
we can’t define it, how can we begin to explain it to
a computer? While much progress has been made over
the last forty years, one common thread has always been
that “We don’t have sufficient processing power.” When
machines were equiped with Megahertz processors, and
Megabyte RAMSs, the argument was that we really needed
Gigahertz machines with Gigabyte RAM. Now that such
computers sell for under $1000 at any electronics store,
the argument is that we need Terahertz machines with
Terabyte RAM. Perhaps the problem is not that the ma-
chines aren’t capable, but that we don’t know how to tell
them to be smart.

But, even if we knew what intelligence was, should we
make every machine as smart as possible? As humans, we
are an example of a nominally intelligent entity. Why isn’t
every species equally intelligent?

This argument has two parts:

1. Intelligence is expensive, in both software and wet-
ware (biological intelligence).

2. The deployment of excessive intelligence for a specific
task may have serious unintended consequences.



In this paper we will use a simple definition of an
intelligent system - one that can overcome obstacles to
achieve its goals. This is a blending of the problem solving
approach suggested by Newell and Simon[3] and the reac-
tive systems approach used by many robotics researchers.
In short, we know something is intelligent by how it re-
sponds when things go wrong. If every attempt at goal
achievement runs perfectly smoothly, there may be no
intelligence at all, but if we see the system attempt a
goal, fail, overcome these obstacles, and then succeed, we
would be tempted to argue that it is intelligent. As Ed-
win Boring put it “There is little that will make our robot
seem more human than this ability to choose one means
after another until the goal is reached.”

2 INTELLIGENCE IS EXPENSIVE

It is hard to make anything behave intelligently. Cer-
tainly, significant strides have been made in embedding
rudimentary intelligence into some systems, but design-
ing, developing, and deploying something that acts in-
telligently consumes major resources on the development
side, and seems to require extreme amounts of computa-
tional resources on the deployment side.

2.1 Biological Intelligence

Using biological systems as perhaps the only exemplars
of deployed, long-term intelligent systems, it is clear that
there is some sort of a trade-off between the cost of devel-
oping and maintaining intelligence, and the benefits that
this intelligence provides to the species. While any indi-
vidual mouse might prosper from being able to outsmart
a cat, clearly, the costs have outweighed the benefits for
most species of mice.

Biological organisms can be viewed as very highly
optimized systems, with very few slack resources. If re-
sources are used to create and maintain a feature that is
not necessary for survival, then those resources cannot be
used for any other purpose. As a result, another type of
organism could fill the same ecological niche, consuming
fewer resources, and thus be better fitted to survive[4].
This applies to gaudy displays of feathers, bioluminescent
lures, and to brains. In fact, brains are very expensive in-
vestments. In humans the brain makes up approximately
2% of the body mass, yet uses 20% of the calories in-
gested[5]. Gram for gram, the brain requires ten times as
much energy as the body as a whole: brains are very ex-
pensive components to maintain in a biological organism.

Let us look at a task that we can acheive with a robot-
ing system, foraging and caching. Imagine a small robot
trash collector. It travels around a space collecting litter,
and transporting that litter to trach cans. To do so, it uses

vision to locate the litter, localizes itself in the world, and
then travels to a memorized location (using some form of
waypoint navigation) to drop off the trash. This behavior
is analogous to food caching behavior demonstrated by
several species, with one critical difference. If the animal
cannot find the seed caches, it will starve to death. Pre-
sumably, the more food it can cache (and find) the better
its chances for survival.

The cognitive load is low if the bird places all the
seeds in one cache, but if that single cache is destroyed,
the results are deadly. So, many bird species have de-
veloped the strategy of creating a large number of small
food caches, and then returning to these caches to re-
cover the stored food. There is a significant (for a bird,
anyway) cognitive load associated with managing a large
number of caches. The individual cache locations must
be memorized (or some algorithmic mechanism must be
used to ‘rediscover’ them), and the bird must also remem-
ber which caches have been emptied and which still re-
tain food. In birds, the hippocampus is critical for spatial
memory[6], and increased spatial memory corresponds to
increased size of the hippocampus.

Beyond the basic idea that there is no such thing as a
free lunch, is there any evidence that there are tradeoffs
between increasing intelligence versus improving other
characteristics that lead to higher success of an individ-
ual or a species? If there is no trade-off, we would expect
to see the same types of cognitive fuction in closely re-
lated species. Conversely, if there is a trade-off, then we
would expect to see closely related species with different
cognitive loads, developing different cognitive abilities.

Three closely related bird species, all living in the
same ecosystem, have been studied to determine the re-
lationship between cognitive need and cognitive function
[7]. These three species are:

1. Clark’s nutcracker (Nucifraga columbiana),
2. the pinyon jay (Gymmnorhinus cyanocephalus), and
3. the scrub jay (Aphelocoma coerulescens).

While all three of these birds cache seeds, the Clark’s
nutcracker is the most prodigious seed gatherer. This
species can cache up to 35,000 seeds in individual caches
of approximately 15 seeds each[8]. The other two corvids
also cache seeds, but in lesser numbers. The ability to
locate these caches is regulated by the hippocampus. If
there was no tradeoff to the growth of the hippocampus
then we would expect that all three of these species would
have a similarly large hippocampus. However, the size of
the hippocampus is proportional to the seed caching abil-
ity of the species[9].

In addition, one of the three corvids, the pinyon jay,
is quite social, while the scrub jay is solitary. Testing was
done on these two species, to assess their ability in com-
plex cognitive tasks of the type that would be relevant



Fig. 2. Clark’s nutcracker, This small bird stores seeds in up
to 3000 individual caches, and uses waypoints to navigate back
to the storage locations. To achieve this, the bird’s hippocam-
pus is increased in size when compared with related birds in
the same ecosystem.

to their ability to assess and track social relationships. In
one of these, the ability of the bird to infer the ordering
of a set of arbitrary relationships from a series of dyadic
comparisons was tested. In the second, their ability to
make transitive inferences was tested. The pinyon jays
scored higher on both types of tests[10].

These three species have distinct techniques for sur-
viving in very similar ecological niches. One has devel-
oped a larger hippocampus to support the cognitive load
of cache management, one has developed increased so-
cial network skills, and the third has neither of these.
Each is surviving and competing in the same environ-
ment. However, none of these has both the increased hip-
pocampus and the increased networking skills. One would
presume that such a bird would have the benefits of both
the Clark’s nutcracker and the pinyon jay, and would out
compete both of the others. We posit that the cost of
building and maintaining a more complex brain is the
limiting factor.

2.2 Machine Intelligence

Embedding intelligence into a machine is also very ex-
pensive, both in building (designing and developing) the
intelligence, and in maintaining the computational re-
sources needed to act intelligently. We will approach this
from two ends of the machine intelligence spectrum: the
costs of deliberative intelligence, and the costs of reactive
intelligence.

Deliberative intelligent systems are fairly easy to de-
velop. The engine needed to do a brute force exploration
of possible world states is a well known, solved problem.
The development cost of a deliberative system is quite
reasonable, provided that one only wants to work on toy
problems. Making a deliberative system that is capable
of producing solutions to more complex, real world prob-
lems; and producing these solutions in a reasonable time
frame becomes more challenging. The cost of a solution

is exponential in the number of factors in the domain,
and exponential in the depth of the planning process.
In addition, since these systems are based in an inter-
nal model of the domain, it is fairly expensive to deploy
a deliberative system into a domain. However, the ma-
jor problem seems to be actually using the deliberative
system to achieve goals in the real world.

It has been well established that the model of de-
liberative cognition is computationally expensive. This
has been shown in domains such as robotic systems [11,
12], planning systems[13—-16], and two player game play-
ing[17]. The general approach is the further the system
can ‘look ahead’ the more likely it is to meet its goals.
However, the greater the look ahead, the exponentially
greater the computation; the greater the resolution of the
internal model, the greater the maintenance costs of keep-
ing the intelligent system current. In response to these
problems, reactive systems were proposed.

Reactive systems have been defined as systems with
tightly coupled perception and action, typically in the
context of motor behaviors, which produce timely robotic
response in dynamic and unstructured worlds[18]. In ef-
fect, the system is designed so that whenever a significant
sensory input is detected, it responds with the ‘correct’
action/output. Frequently modeled using a subsumption
architecture[19], these systems are easy to deploy, and can
exhibit complex behaviors that seem intelligent. However,
it can be devilishly difficult to design the behaviors to
achieve the ‘correct behavior’. Researchers[20] have done
comparative analysis of the behavior of reactive systems
and humans suffering from Korsakov syndrome! They
concluded that, even with reactive system, there is a
tradeoff between the system getting stuck in cyclical be-
havior and the ability of the system to perform complex
behaviors. In effect, adding additional layers to the lay-
ered control system resulted in un-intended consequences
that prevented the system from behaving intelligently.

It seems that just like in biological systems, intelli-
gence is very expensive, either in designing a reactive
system to achieve goals, or in the computational burden
of deploying a deliberative system into the real-world.
Of course, most deployed intelligent systems are neither
purely reactive nor purely deliberative. The use of hybrid
systems is the norm, and numerous hybrid architectures
have been proposed and are under development[21,11,
22].

But, let as assume that we have the ability to put
as much intelligence as we wish into a deployed system.
When we look at computational systems it is also neces-
sary to balance the benefits of increased intelligence. Hav-

! A medical condition that results in the loss of memory of
recent events, while impressions of long ago are recalled

properly.



ing a 100 Gigabit per second processor and a Gigabyte
RAM (Hans Moravec’s estimate of a mouse brain[23]) in a
vacuum cleaner may not result in an appreciably cleaner
floor than that provided by a system using a random walk
circuit.

3 TOO MUCH INTELLIGENCE?

But suppose the customers were willing to pay for the de-
velopment and deployment, or suppose that we suddenly
had the positronic brain that allowed us to put as much
intelligence as we wanted into any device that we chose.
Surely nothing could go wrong by making the intelligent
system as smart as possible, could it? This may depend
on one’s point of view. Certainly this scenario has been
presented in numerous ways from Capeks “Rossum’s Uni-
versal Robots” [24]” through Authur C. Clarke’s “2001: A
Space Odyssey”. The notion of an intelligent system that
is free to make its own decisions has been, and continues
to be, the focus of numerous workshops and conferences.

One issue is the notion of how smart should a system
be allowed to be. The simple answer of ‘as smart as pos-
sible” has led to some interesting conclusions. We, as the
designers and employers of these intelligent tools, want
them to have several characteristics such as:

— Robustness and Fault Tolerance,
Reliability,

— Flexibility and Adaptability, and
Coherence[25].

Yet these design goals contain within them internal
conflicts. It is a common experience to test an intelligent
system and during testing discover that the system has
achieved its goals, but in a way that was unintended by
the designer. Sometimes the system produces a high qual-
ity solution, but far more often the solution is unaccept-
able. The system was intelligent enough to see a solution
that took advantage of a ‘loophole’ in the problem speci-
fication, causing the designer to enter into a battle of wits
- trying to specify the problem precisely enough to allow
the system to find the ‘right’ solution, but not so tightly
that robustness and flexibility are sacrificed in pursuit of
reliability. During early work on a control system for a
maintenance robot, the planning system ‘discovered’ that
the easiest way to effect a repair of a broken machine was
to strip working parts off a functioning instrument[26].
Then, when instructed to fix this newly broken machine,
all it had to do was replace the parts that it had re-
moved earlier, thus ensuring perpetual employment for
the robot. In one sense this is a very intelligent solution,
but not the kind of solution we want to achieve.

Imagine a really intelligent vacuum cleaner, a task
oriented, goal driven, autonomous vacuum cleaner. It has

a job to do - keep the carpets clean in the family room.
If it were just a dumb vacuum cleaner it would simply
bounce around the floor at random, sucking up dirt, and
avoiding obstacles[27].

But this wastes power, since it is often cleaning sec-
tions that are not dirty; and it is inefficient, since it may
cover the center of the room far more often than the cor-
ners which are dirty. So let’s give it more intelligence.
Now it can estimate the traffic in the room, and can lo-
calize itself, so it covers the floor more efficiently, and
only vacuums when the room has been used[28]. So far,
so good. But - surely we can do better, let’s make it even
smarter.

4 AS SMART AS POSSIBLE

Let’s embed some significant intelligence into our robot,
the ability to learn the habits of the people with whom it
shares a workspace, the ability to learn that when Susie
uses the room there are potato chips all over the floor, and
she drops those hair pins that cause down time. When
Dave uses the room to study there is no point coming
out to vacuum, because there is nothing to clean up. But
worst of all is the poodle Fifi. She comes in after running
through the woods, and lies on the carpet and chews the
dried mud out of her fur, and works those burrs out and
spits them on the carpet.

In fact, in applying a little reinforcement learning to
the problem, the vacuum cleaner could easily produce
the following analysis: “It is clear that 60 to 70 percent
of my workload is generated every time that dog comes
into the family room. So, given the task of keeping the
carpet clean, and managing energy costs, it would be best
if that dog never came into the room at all. Hmmmmm,
maybe a little experimentation is in order...” This might
result in the following dialog;:

“Mom!, the vacuum cleaner is chasing the dog
again!”

“David, you’re an engineer, can’t you do some-
thing with that machine?”

“Let’s just alter your programming a little....”
“I'm sorry Dave, I'm afraid I can’t do that.”

Unfortunately, one of the unintended side effects of
adding unneeded complexity to artifacts is the need to
control the interactions between various sub-components.
Since the number of possible interactions increases facto-
rially with the number of components, we quickly get to
the point where the side effects cannot be controlled[29].



This type of problem has been explored in many com-
plex systems. Several researchers[30,31] suggest that as
systems become more complex these internal conflicts will
inevitably result in outcomes which are clearly wrong,
which were unexpected until they occurred, but were
inevitable in hindsight. Charles Perrow[32] calls these
events normal accidents, and classifies systems according
to the criteria of:

1. interactions - linear to complex, and
2. coupling - loose to tight.

According to Perrow, a linear system is one that has a
general linear flow, no significant loops or feedback mech-
anisms. A system with complex interations has significant
feedback, where the output of one stage of the process
changes the inputs to an earlier stage, changing the out-
puts, ad infinitum. A system with tight coupling is one
in which it is difficult, or impossible, to stop the process
without causing problems, and one in which everything
must flow in one of a few allowed pathways if the sys-
tem is to function correctly. Based on these criteria, he
identifies four classes of systems, and argues that tightly
coupled systems with complex interactions are the most
prone to inevitable failure.

Unfortunately, this seems to define an intelligent sys-
tem, at least one that interacts with the world to achieve
goals. Perrow’s conclusions are that such systems need
to be used sparingly, and only if necessary; and, if possi-
ble, the complexity and coupling of the systems need to
be reduced to a minimum. In effect, the machines need
to be just ‘smart’ enough to get the job done, and no
smarter. Adding unnecessary intelligence will increase the
risks of unexpected and unacceptable outcomes, increase
the costs of designing and deploying the system, and pro-
vide no real benefits.

5 CONCLUSIONS

There are costs to adding more ‘intelligence’ to robots.
Some of these costs are economic, some are structural,
and some, inevitably, will be social. The economic costs
of adding intelligence are dropping, along with the falling
costs of hardware, and the growing sets of software tools
to support intelligent systems. However, the structural
costs have yet to be really experienced in the intelligent
systems domain. So the push is towards putting more
and more smarts into any possible system, just to get it
to do something useful. This is a good thing on many
levels, but perhaps all too quickly we will find that these
intelligent machines don’t look at the problem space in
the same way we do, and that some of their intelligent
solutions will be optimal for them, but sub-optimal for
us.

This suggests that along with performance metrics
for intelligent systems, we need to develop intelligence
thresholds for mission tasking: give me a system that is
just smart enough to get the job done, and not so smart it
will screw the job up. The appropriate level of intelligence
is the minimum amount needed for a specific system to
reliably achieve a specific set of goals.
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